成av人片在线观看欧美成人一区二区三区四区|女人18毛片国产|女人18毛片水多久久|隔壁的妹妹电影|综合一区中文字幕熟女人妻|91麻豆精品国产人妻系列|人妻少妇不满足中文字幕|日本少妇高潮喷水xxxxxxx|家庭乱欲电影|福利高潮潮喷视频,国产一级特级婬特婬片,色屋AV线,国产美女爱做视频毛片

首頁(yè) > 學(xué)歷提升   >   考研數(shù)學(xué)蒙題技巧和方法

考研數(shù)學(xué)蒙題技巧和方法

2025-02-02 09:45:06
瀏覽240 點(diǎn)贊46 收藏51

在考研數(shù)學(xué)中,,選擇題是必不可少的一部分,。但是,由于時(shí)間緊迫和考試壓力大,許多考生在選擇題上會(huì)感到困惑和迷茫,。為了幫助考生更好地應(yīng)對(duì)選擇題,,下面介紹幾種常用的蒙題…

1考研數(shù)學(xué)蒙題技巧和方法

在考研數(shù)學(xué)中,選擇題是必不可少的一部分,。但是,,由于時(shí)間緊迫和考試壓力大,許多考生在選擇題上會(huì)感到困惑和迷茫,。為了幫助考生更好地應(yīng)對(duì)選擇題,,下面介紹幾種常用的蒙題技巧和方法。

01 直推法

直推法是最基本,、最常用,、最重要的方法。它是由條件出發(fā),,運(yùn)用相關(guān)知識(shí),,直接分析、推導(dǎo)或計(jì)算出結(jié)果,,從而作出正確的判斷和選擇,。在考研數(shù)學(xué)中,許多計(jì)算類(lèi)選擇題都可以用這種方法解決,。

例如,,有一道選擇題如下:

已知函數(shù) $f(x)=\frac{x}{x^2-1}$,則 $f(f(x))$ 的值為( )

A. $\frac{1}{x}$

B. $\frac{x}{x^2-2}$

C. $x$

D. $\frac{x^2}{x^2-2}$

通過(guò)直推法,,我們可以先求出 $f(f(x))$:

$$f(f(x))=f(\frac{x}{x^2-1})=\frac{\frac{x}{x^2-1}}{(\frac{x}{x^2-1})^2-1}=\frac{x}{x^2-3}$$

因此,,正確的選項(xiàng)是 B。

02 反推法

反推法是由選項(xiàng)反推條件,,與條件相矛盾的選項(xiàng)則排除,,相吻合的則是正確選項(xiàng)。有時(shí),,我們還可以將某個(gè)或某幾個(gè)選項(xiàng)依次代入題設(shè)條件進(jìn)行驗(yàn)證分析,,與題設(shè)條件相吻合的就是正確的選項(xiàng),。

例如,,有一道選擇題如下:

設(shè) $a,b,c$ 均為正整數(shù),且 $\frac{a}{b+c}+\frac,{c+a}+\frac{c}{a+b}=2$,,則 $\frac{a}{b+c}\times\frac{c+a}\times\frac{c}{a+b}$ 的值為( )

A. $\frac{1}{8}$

B. $\frac{1}{6}$

C. $\frac{1}{4}$

D. $\frac{1}{3}$

通過(guò)反推法,,我們可以先將選項(xiàng)依次代入題設(shè)條件進(jìn)行驗(yàn)證分析,。當(dāng)我們將選項(xiàng) C 代入題設(shè)條件時(shí),可以得到:

$$\frac{a}{b+c}+\frac{c+a}+\frac{c}{a+b}\geq\frac{3}{2}>2$$

與題設(shè)條件不符,,因此選項(xiàng) C 被排除,。同理,我們可以將選項(xiàng) B 和 D 代入題設(shè)條件進(jìn)行驗(yàn)證分析,,最終得出正確的選項(xiàng)是 A,。

03 反證法

反證法在選擇題中也常常被使用。在選擇題的4個(gè)選項(xiàng)中,,若假設(shè)某個(gè)選項(xiàng)不正確(或正確)可以推出矛盾,,則說(shuō)明該選項(xiàng)是正確選項(xiàng)(或不正確選項(xiàng))。選擇先從哪個(gè)選項(xiàng)著手證明,,則須根據(jù)題目條件具體分析和判斷,,有時(shí)可能需要一些直覺(jué)。

例如,,有一道選擇題如下:

已知函數(shù) $f(x)=x^2-2ax+a$ 在區(qū)間 $(0,a)$ 上單調(diào)遞增,,則 $a$ 的范圍是( )

A. $(0,+\infty)$

B. $(0,\frac{1}{2})$

C. $(0,+\infty)\cap[\frac{1}{2},+\infty)$

D. $(0,\frac{1}{2}]\cap[\frac{1}{2},+\infty)$

假設(shè)選項(xiàng) A 是正確的,則函數(shù) $f(x)=x^2-2ax+a$ 在區(qū)間 $(0,a)$ 上單調(diào)遞增,。因此,,對(duì)于任意 $0

$$f(x_2)-f(x_1)=(x_2-x_1)(2x_1+2x_2-2a)\geq 0$$

解得 $a\geq x_1+x_2$,。但是,,當(dāng) $x_1=\frac{a}{3}$,$x_2=\frac{2a}{3}$ 時(shí),,

$$a\geq x_1+x_2=a$$

即 $a=a$,,這與假設(shè)不符合。因此,,選項(xiàng) A 被排除,。同理,我們可以依次對(duì)選項(xiàng) B,、C,、D 進(jìn)行反證法的推導(dǎo),最終得出正確的選項(xiàng)是 B,。

04 反例法

如果某個(gè)選項(xiàng)是一個(gè)命題,,要排除該選項(xiàng)或說(shuō)明該命題是錯(cuò)誤的,有時(shí)只要舉一個(gè)反例即可,。舉反例通常是用一些常用的,、比較簡(jiǎn)單但又能說(shuō)明問(wèn)題的例子。如果大家在平時(shí)復(fù)習(xí)或做題時(shí)適當(dāng)注意積累一下與各個(gè)知識(shí)點(diǎn)相關(guān)的不同反例,,則在考試中可能會(huì)派上用場(chǎng),。

例如,,有一道選擇題如下:

某國(guó)企公司要從 $n$ 個(gè)員工中選取一個(gè)管理層領(lǐng)導(dǎo)小組,使其包含 $m$ 個(gè)人,。若該公司要求小組成員必須年齡相差不超過(guò) $10$ 歲,,則 $n$ 和 $m$ 的關(guān)系式為( )

A. $m\leq n-10$

B. $m\leq \lfloor{\frac{n}{10}}\rfloor+1$

C. $m\leq \lfloor{\frac{n+10}{11}}\rfloor$

D. $m\leq \lfloor{\frac{n-10}{9}}\rfloor$

假設(shè)選項(xiàng) A 是正確的,則有 $m\leq n-10$,。但是,,當(dāng) $n=11$、$m=2$ 時(shí),,

$$\begin{aligned}&11,12,13,14,15,16,17,18,19,20,21\\&\Downarrow\\&11,21\end{aligned}$$

其中年齡相差超過(guò)了 $10$ 歲,,因此 A 是錯(cuò)誤的。同理,,我們可以依次對(duì)選項(xiàng) B,、C、D 進(jìn)行反例法的分析,,最終得出正確的選項(xiàng)是 C,。

總之,在考研數(shù)學(xué)選擇題中,,以上幾種蒙題技巧和方法都能夠發(fā)揮其作用,。但是,在實(shí)際操作中需要根據(jù)不同的情況靈活運(yùn)用,,并且需要平時(shí)多加練習(xí)和積累,。只有這樣才能在考試中更好地應(yīng)對(duì)選擇題。

THE END